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ABSTRACT: The impact of tropical Pacific sea surface temperature (SST) biases on the deterministic skill of the Unified
Forecast System (UFS) coupled model Prototype 5 is evaluated during weeks 1–4 of the forecast. The evaluation is limited
to the contiguous United States (CONUS) and two seasons: boreal summer (June–September) and winter (December–
March). The tropical SST in the UFS model is warmer than in observations and bias patterns show seasonal dependence es-
pecially in the central and western Pacific. During boreal summer, the bias is located north of the equator whereas in winter,
the bias is located in the Southern Hemisphere. A regression analysis indicates a significant relationship between these SST
biases and the biases in the surface temperature and precipitation over the CONUS along with midtroposphere large-scale
circulation and North Pacific storm-track activity. The SST biases affect the biases in other fields from week 1 of the forecast
and the impact becomes stronger as the lead time increases to week 4. The impact of SST biases on the biases in other fields
show a qualitative relationship to the patterns of forecast errors of the fields.

KEYWORDS: Hindcasts; Operational forecasting; Model errors; Model evaluation/performance;
Numerical weather prediction/forecasting

1. Introduction

Teleconnections of tropical sea surface temperature (SST)
modes represent one of the sources of predictability on
subseasonal-to-seasonal time scales (S2S) for the surface
weather over the contiguous United States (CONUS; Johnson
et al. 2014; Krishnamurthy et al. 2021). Thus, systematic
errors, also known as biases, in the SST prediction can affect
the forecast skill of S2S forecast systems. Biases in the SST
are common problems in ocean–atmosphere coupled models
and the sources of these systematic errors are associated with
many reasons including, but not limited to, horizontal resolu-
tion in the ocean (Balaguru et al. 2021), ocean–atmosphere
feedbacks (Li and Xie 2014), representation of low-level
clouds (Stan et al. 2010; Hu et al. 2011), and shortwave fluxes
(Zuidema et al. 2016). Similar to the seasonal time scale, at
S2S time scale, uncertainties in the SST initial states (Stan
and Kirtman 2008) can introduce SST drifts that manifest as
biases for the length of the forecast.

The usage of atmospheric models coupled to an active
ocean model and sea ice model for S2S prediction has become
the standard model configuration adopted by major forecast-
ing centers only in the last few years. For example, in 2017 out
of 11 operational S2S forecast systems participating in the S2S

Prediction Project database, 6 used a combination of persis-
tence of initial conditions and climatology to define the oce-
anic and sea ice boundary conditions (Vitart et al. 2017). As a
result, the impact of SST biases on the S2S forecast skill is not
well understood. Climate modeling studies offer some insight
on the potential effects of SST biases through their impact on
the large-scale circulation and associated moisture transports.
For instance, in a recent study Johnson et al. (2020) have
shown that correction of tropical SST biases in intervention
experiments yields to improvements of precipitation statistics
over North America. In particular, their results show that in
boreal winter, negative SST biases in the extratropical North
Pacific strengthen the storm track and displace it southward
from its winter climatological position. These changes in the
storm track can be further associated with enhanced precipi-
tation in the southwestern United States. In boreal summer,
the effect of the cold bias is a weakening of the North Pacific
storm track, which can be associated with drier conditions
over northern North America.

The main objective of this study is to explore the statistical
link between the SST biases over the tropical Pacific and the
errors in the S2S forecast of surface weather over the CONUS.
The analyzed forecasts are produced with an experimental
version of the S2S application of the NCEP next-generation
forecast system, the Unified Forecast System (UFS). The rela-
tionship between tropical Pacific SST biases and remote biases
over CONUS is investigated using a simple linear regression
between the biases, with the SST bias as the predictor variable.
A qualitative analysis is further applied to explore similarities
between the SST-induced biases and forecast skill measured
by the root-mean-square errors. While both measures are
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intended to quantitatively evaluate the quality of forecasts, they
refer to different aspects of the quality (Murphy 1993). The bias
measures the correspondence between the mean forecast and
mean observations by comparing their marginal distributions
whereas the forecast skill measures the relative accuracy over
some reference skill such as persistence or climatology (Murphy
1993).

In section 2, we describe the observations, forecast sys-
tem, and analyses utilized in this paper. The main biases in
the tropical SST, surface temperature, and precipitation
over CONUS and large-scale atmospheric circulation are pre-
sented in section 3a. The potential impact of SST biases on the
other forecast biases are discussed in section 3b. Section 3c
describes the qualitative results. Section 4 offers remarks and
conclusions.

2. Model, data, and methods

a. Model

The numerical model used in this study is the UFS Coupled
Model Prototype 5, developed by the NCEP (Krishnamurthy
et al. 2021; Krishnamurthy and Stan 2022; Stefanova et al.
2022). This configuration of the UFS model consists of an at-
mospheric component (FV3GFS), an oceanic component
(GFDL MOM6 model; Adcroft et al. 2019), a sea ice compo-
nent (Los Alamos CICE6 model) with tripolar 0.258 global
grid, and a component for sea waves (WW3DG 2019). The
coupling of the wave model with the other components is
through the National Unified Operational Prediction Capabil-
ity (NUOPC) component connector. The atmosphere, ocean,
and sea ice models are coupled via the Community Mediator
for the Earth Prediction Systems (CMEPS). This is the first
UFS prototype using CMEPS for performing custom cou-
pling operations. FV3GFS uses the FV3 dynamical core on
the cubed-sphere grid (Putman and Lin 2007; Harris and Lin
2013) and the Common Community Physics Package (CCPP)
for physics parameterizations. The atmospheric component
has a horizontal resolution of ;0.258 (C384) and 64 levels in
the vertical. The horizontal resolution of the ocean and sea ice
models is 0.258. TheUFS coupledmodel was utilized to generate
a set of retrospective forecasts for the period April 2011–March
2018. The reforecasts are initialized on the first and fifteenth of
eachmonth (168 reforecasts for the entire period) and are 35 days
long. The atmospheric initial conditions were the Climate Fore-
cast SystemReanalysis data while the Climate Prediction Center
(CPC) Hybrid Global Ocean Data Assimilation System pro-
vided the initial conditions for the ocean model. The sea ice
model was initialized by the CPC ice analysis and the initial
conditions for the wave model were produced using forcing
generated with the Climate Forecast System version 2 (CFSv2;
Saha et al. 2014). Because in this study only reforecasts will be
analyzed, theywill be referred to as forecasts.

b. Data

The forecasts will be compared to observations and reanalysis
data, which will be referred to as observations. The daily mean
observational datasets include the Optimally Interpolated SST

version 2 (OISST2) dataset developed by NOAA (Reynolds
et al. 2007) on a 0.258 longitude 3 0.258 latitude grid, CPC
unified (CPCU) gauge-based analysis of daily precipitation
(P. Xie et al. 2010) on a 0.58 3 0.58 grid, CPC global tempera-
ture (provided by the NOAA/OAR/ESRL) on a 0.58 3 0.58
grid, and the European Centre for Medium-Range Weather
Forecasts interim reanalysis (ERA-Interim, hereafter
ERAI; Dee et al. 2011) on the T255 horizontal grid (;0.7038
resolution).

c. Methods

All analyses are conducted on the 0.258 longitude 3 0.258
latitude grid for the consistency of analysis in each field. The
forecast data were saved every 6 h. Precipitation data repre-
sent a 6-h accumulation and the other variables are instanta-
neous values. The 6-hourly data are converted to daily means
starting from forecast hour 6. For both the observed and
model data, daily climatological mean was computed as the
average of calendar day over the period of the forecasts. Daily
anomalies are computed by subtracting the climatological
mean from daily values. Similarly, weekly means and anoma-
lies are computed by averaging daily means and anomalies,
respectively, over the week under consideration. The analysis
is conducted for two seasons: boreal summer [June–September
(JJAS)] and boreal winter [December–March (DJFM)].

To investigate the North Pacific storm track two methods
were adopted: (i) an Eulerian measure based on the 500-hPa
geopotential height (Z500) variability and (ii) a time-varying
method based on the 24-h change in the large-scale circulation
measured by the Z500 daily anomalies. In the Eulerian frame-
work, a high-pass filter (8 days) is applied to extract the synoptic
signal from the Z500 daily anomalies. The filter is constructed
by first applying a fourth-order low-pass Butterworth filter
(Hamming 1989) and then subtracting the filtered signal from
daily anomalies. In the second method, the storm-track activity
at each grid point is defined as

DZ2(t) 5 [Z500(t 1 24) 2 Z500(t)]2, (1)

where Z500 denotes daily anomalies. A version of Eq. (1)
based on the sea level pressure was used by Yau and Chang
(2020) to characterize the storm tracks in the Northern
Hemisphere.

The mean change in the biases over CONUS in response to
SST biases is measured by the lag-0 regression coefficient of
weekly biases. The statistical significance of regression analy-
sis is established using the effective number of degrees of free-
dom developed by Bretherton et al. (1999). The effective
number of degrees of freedom at each gid point is defined as

d 5 N
1 2 r1r2
1 1 r1r2

,

where N is the sample size and {ri; i 5 1,2} the lag-one auto-
correlation of time series of predictor and predictand, respec-
tively. The number of degrees of freedom used for the calculation
of t value is an area average.
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3. Results

a. Forecast biases

The first step in understanding the impact of SST biases is
to estimate them, and Fig. 1 shows the weekly biases defined
as the difference in the daily mean of SST between all UFS
forecasts (both initial conditions) and observations averaged
over 7 days. In both seasons, SST biases increase from week 1
through week 4. In the tropical Pacific, a positive bias appears
in the hemisphere where summer is located. During boreal
summer, a large positive bias develops over the warm pool

region. This bias reaches maximum values (;0.68–0.88C) dur-
ing week 3. In week 1, the warm bias (;0.48–0.68C) in the
warm pool region is slightly higher than the bias (0.38–0.48C)
in a prototype developed by the Met Office to become their
operational coupled numerical weather prediction forecasting
system (Vellinga et al. 2020). A study by Emery (2015) showed
that the accuracy of buoy measured bulk SST is within60.48C;
therefore, only biases outside of this range represent true
model errors. In Fig. 1, regions where the absolute value of the
SST bias is greater than 0.48C are highlighted. In the tropical
eastern Pacific, a cold bias located at the equator in week 1

FIG. 1. Difference in the climatological mean of SST (K) between UFS forecasts and observation (OISST) for the first
4 weeks of forecasts during (left) JJAS and (right) DJFM. The forecasts initiated from the first and fifteenth each month
of JJAS and DJFM during 2011–18 are used in computing the bias. The green box covering 108S–108N, 1208E–1808 is
the domain over which the equatorial SST index will be defined. Numbers in the upper-right corner represent the mean
bias in the green box. Regions where the absolute value of bias is greater than 0.48 are hatched.
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expands meridionally south of the equator reaching 608S by
week 4.

During boreal winter, the warm SST bias has a zonal struc-
ture across the southern tropical Pacific with a small intrusion
north of the equator eastward of the date line. Just like in
boreal summer, maximum SST biases during boreal winter
are located over the western Pacific, but shifted over the
Maritime Continent. For this reason, the region of 108S–108N,

1208E–1808 is being used to construct an index defined as the
area average of SST bias and interpreted as the SST bias in
the deep tropics. In the extratropics, the forecasts develop a
cold bias in the northern Pacific that amplifies and expands
form week 1 through week 4 during boreal summer. In boreal
winter, the extratropics are dominated mostly by weak nega-
tive SST biases in the North Pacific. Biases in other atmo-
spheric and land parameters that can be affected by tropical

FIG. 2. Difference in the climatological mean of precipitation (mm day21) between UFS forecasts and observation
(CPCU) for the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The forecasts initiated from the first
and fifteenth each month of JJAS and DJFM during 2011–18 are used in computing the bias.
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SST are shown in Figs. 2–5 for both boreal summer and
winter.

During boreal winter, precipitation (Fig. 2) shows a mean wet
bias (positive difference) across CONUS, with a small exception
over a narrow strip along the Gulf of Mexico’s northern shores.
The magnitude of biases increases from about 0.3–0.4 mm day21

during week 1 to about 1.2 mm day21 in week 4. During boreal
summer, biases are both positive and negative and show patterns
that change location, shape, and sign with the forecast lead. The

West Coast of the United States shows a consistent dry bias
(negative difference) from week 1 through week 4 with a magni-
tude that increases with the forecast lead. Another region with a
persistent dry bias is the peninsular Florida.

The surface temperature biases (Fig. 3) show distinct pat-
terns for winter and summer. During boreal summer, a warm
bias dominates the entire U.S. regions west of 958W. The
warm bias is almost constant over the 4 weeks of the forecast
suggesting either a saturation of biases on short range time

FIG. 3. Difference in the climatological mean of surface temperature (K) between UFS forecasts and observation
(CPCU) for the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The forecasts initiated from the first
and fifteenth each month of JJAS and DJFM during 2011–18 are used in computing the bias.
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scales or an influence from boundary forcing such as the SST.
Biases on the other half of United States are slightly colder
and with less distinct regional patterns. During boreal winter,
biases are also almost constant with distinct regional patterns.
A distinct diagonal strip in the southeastern United States is
dominated by cold biases as well as a zonal strip above 408N.
This latitude corresponds to the rough climatological latitude
of the storm track (Cook et al. 2018). Central and western
U.S. regions are dominated by warm biases.

Following Johnson et al. (2020) hypothesis that changes in
the storm tracks can be associated with changes in precipita-
tion over North America, we also investigate biases in the
North Pacific storm track. For this purpose, baroclinic wave
activity is defined as the variance of the high-pass filtered
Z500 anomalies. Figure 4 shows Z500 biases and Fig. 5 shows

the difference in the variance of 8-day high-pass filtered Z500
anomalies. In both seasons, Z500 biases increase with the fore-
cast lead. Over most of the United States, the forecasts overes-
timate (positive difference) the geopotential height during
boreal summer and underestimate (negative difference) them
during boreal winter. These regional biases are part of large-
scale waves that propagate from the tropics into the extra-
tropics. During boreal summer, a negative center that develops
in the first week in the midlatitudes of the central Pacific inten-
sifies and expands northeastward up to week 3, after which it
is replaced by a positive center. Over the North Atlantic, a
very small positive bias (,10 gpm), between 508 and 608N and
east of 308W, in week 1 expends westward and intensifies to
more than 40 gpm in week 4. During boreal winter, the nega-
tive center around 408N in the eastern Pacific noticed in boreal

FIG. 4. Difference in the climatological mean of 500 hPa geopotential height (gpm) between UFS forecasts and rean-
alysis (ERAI) for the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The forecasts initiated from the
first and fifteenth each month of JJAS and DJFM during 2011–18 are used in computing the bias.
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summer persists and is flanked to the north and south by posi-
tive centers. In the Atlantic, a positive center north of 408N
and a negative center south of 408N intensify from week 1 to
week 4.

The differences between the filtered variance of the forecast
and observation suggest that forecasts underestimate the strength
of the storm tracks in both seasons and the errors are larger dur-
ing boreal winter. The bias patterns seen in the storm-track activ-
ity measured by the Z500 filtered variance are reproduced when
DZ2 is used as a storm-track metric (Fig. S1 in the online
supplementalmaterial).

b. Impacts of SST bias

The relationship between the tropical SST biases over the
western Pacific and the biases in the other fields described

above are evaluated using a linear regression method. In this
method, biases in the atmospheric and land parameters are re-
gressed onto the standardized index of the equatorial SST bias
(defined earlier in section 3a). A caveat of the analysis pre-
sented here is that only lag-0 regression is considered. The per-
sistence of tropical SST bias suggests that analysis for other
lags will not change the results. In Fig. 1 the mean value of the
equatorial SST bias index is shown for each week. While in
week 1 the mean value of the index is within the margin of
measurement errors, the regression for lead 1 week is still
shown for completeness of analysis. In week 2 of winter, the
mean value of the SST index is also smaller than the measure-
ment errors. If the box is shifted slightly southward the mean
value of the index is larger than the threshold errors. The posi-
tion of the box is kept fixed for the consistency of the analysis.

FIG. 5. Difference in the variance (gpm2) of 8-day high-pass filtered 500 hPa geopotential height anomaly between
UFS forecasts and reanalysis (ERAI) for the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The fore-
casts initiated from the first and fifteenth each month of JJAS and DJFM during 2011–18 are used in computing the
variance.
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The lag-0 regression maps of Z500 biases are shown in
Fig. 6 for both boreal summer and winter. Most bias centers
described in Figs. 2–5 are significantly related to the tropical
SST bias. During boreal summer, in the first week of the
forecast the Z500 bias on the order of 10 gpm noticed over
most of the United States in Fig. 4 can be explained by a
bias in the SST with the magnitude about one standard devi-
ation. During week 2, the amplitude of regression coeffi-
cients increases slightly but the increase is not significant.
During weeks 3 and 4 the regression pattern projects well
onto the pattern of Z500 biases described in Fig. 4. The pat-
tern of Z500 biases coherent with tropical SST biases closely
resembles the Rossby wave train propagating northeastward

from the tropics into the extratropics with negative biases in the
tropical Pacific in conjunction with positive tropical SST biases
and positive biases along the West Coast of the United States
associated with negative tropical SST biases. Over the eastern
half of the United States, positive biases are in conjunction with
positive equatorial SST biases. During boreal winter, the re-
gression pattern is similar to summer, but with larger values
and significant areas. During week 3, the regression pattern re-
sembles the Pacific–North American (PNA)-like atmospheric
circulation pattern. PNA is the Northern Hemisphere extra-
tropical response to El Niño–Southern Oscillation (ENSO; e.g.,
Lin and Derome 1999). The regression patterns are displaced
slightly southward compared to the corresponding Z500 biases.

FIG. 6. Regression of bias (model forecast minus reanalysis) in the daily mean 500 hPa geopotential height on the
equatorial index of the bias (model forecast minus observation) in the daily mean SST for the first 4 weeks of forecasts
during (left) JJAS and (right) DJFM. The SST index is the area average over 108S–108N, 1208E–1808. The regions
where the regression coefficient is statistically significant above 5% are hatched. Units are in gpm per unit standard de-
viation of the SST time series. The forecasts initiated from the first and fifteenth each month of JJAS and DJFM during
2011–18 are used in computing the regression.
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A possible mechanism for this connection is that a warm bias in
the equatorial Pacific can excite an anomalous heating over the
region (Chang et al. 2006), which results in a Rossby wave train
propagating northeastward.

The regression coefficients of bias in the 8-day high-passfiltered
dailyZ500 anomaly on the equatorial SST index aremuchweaker
and not statistically significant (Fig. 7). This result suggests that
biases in high-frequency variability of Z500 are not related to
tropical Pacific SST biases. The anomalous transient-eddy ac-
tivity due to the Rossby wave train induced by SST bias is not
robust. This analysis does not rule out the impact of SST biases
on the storm tracks, as shown by the regression of biases inDZ2

onto the SST index (Fig. 8). During boreal summer, week 2
shows a robust influence of tropical SST biases onto the North
Pacific storm track and during boreal winter, the relationship is
robust in week 1.

The regression of precipitation bias on the tropical SST index
(Fig. 9) shows a few regions of robust SST influence although
these regions change from season to season and from week to
week within the same season. In boreal summer, a small region
over Nevada is statistically significant in week 1. Interestingly
enough, the precipitation bias (Fig. 2) over this region has a dif-
ferent sign than the adjacent regions. The negative precipitation
bias in this region may be the response to a negative SST bias.

FIG. 7. Regression of bias (model forecast minus reanalysis) in the 8-day high-pass filtered daily anomaly of 500 hPa
geopotential height on the equatorial index of the bias (model forecast minus observation) in the daily mean SST for
the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The SST index is the area average over 108S–108N,
1208E–1808. The regions where the regression coefficient is statistically significant above 5% are hatched. Units are in
gpm per unit standard deviation of the SST time series. The forecasts initiated from the first and fifteenth each month
of JJAS and DJFM during 2011–18 are used in computing the regression.
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In week 2 this region expands over southwestern Oregon
and remote northeastern California. However, the regres-
sion coefficients change sign. This region with significant re-
gression is covered by a negative precipitation bias (Fig. 2)
and may be the response to a negative SST bias. During the
same week, another region with robust SST influence devel-
ops over the northern half of Georgia. The positive precipi-
tation bias (Fig. 2) over this area suggests that it may be the
response to a positive tropical SST bias. During week 3, the
region in the northwestern United States continues to shift
northward covering Oregon, Washington State, and a small
fraction of central Idaho.

The region in the southeastern United States shifts south-
ward over southern Georgia and Florida. Two more regions
with robust SST influence develop during this week. The new
regions have larger areal extent. The first region with positive
values of regression covers most of the Four Corners. These
regions are covered by coherent positive precipitation biases,
suggesting they may be the response of positive SST biases.

The second region with large negative values of regression
covers an extended area that spans across Arkansas, Missouri,
Illinois, and Indiana. The precipitation biases (Fig. 2) over this
area are mostly positive but also show some patches of negative
biases suggesting a strong influence from local land–atmosphere

FIG. 8. Regression of bias (model forecast minus reanalysis) in the daily storm track based on DZ2 [see Eq. (1) for
definition and details] on the equatorial index of the bias (model forecast minus observation) in the daily mean SST
for the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The SST index is the area average over
108S–108N, 1208E–1808. The regions where the regression coefficient is statistically significant above 5% are hatched.
Units are in 0.001 gpm2 per unit standard deviation of the SST time series. The forecasts initiated from the first and
fifteenth each month of JJAS and DJFM during 2011–17 are used in computing the regression.
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interaction effects. During week 4, the region with significant re-
gression resembles the El Niño response along the East Coast
of the United States.

In the case of surface temperature (Fig. 10), regions with sig-
nificant values of the regression coefficients cover large areas

especially during the summer. In boreal summer, the first
3 weeks are dominated by extensive regions with positive values
of the regression coefficients. Over these regions, surface tem-
peratures in the forecast have a warm bias (Fig. 3) suggesting a
possible influence of the warm SST bias, but some notable

FIG. 9. Regression of bias (model forecast minus observation) in the daily mean precipitation on the equatorial index
of the bias (model forecast minus observation) in the daily mean SST for the first 4 weeks of forecasts during (left)
JJAS and (right) DJFM. The SST index is the area average over 108S–108N, 1208E–1808. The regions where the regres-
sion coefficient is statistically significant above 5% are hatched. Units are in mm day21 per unit standard deviation of
the SST time series. The forecasts initiated from the first and fifteenth each month of JJAS and DJFM during 2011–18
are used in computing the regression.
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differences exist between the regression and bias patterns. The
location of regions with robust regression is similar to the posi-
tion of regions with maximum forecast errors in the warming
trend signal of the surface air temperature documented by
Krishnamurthy et al. (2021). A close correspondence can be

seen between the regression and bias patterns along the West
Coast of the United States, but with weak significance. The
areas influenced by SST biases in weeks 2 and 3 are different
than those in week 1. In week 4, the region in the southeastern
United States with significant regression is affected by a cold

FIG. 10. Regression of bias (model forecast minus observation) in the daily mean surface temperature on the equato-
rial index of the bias (model forecast minus observation) in the daily mean SST for the first 4 weeks of forecasts during
(left) JJAS and (right) DJFM. The SST index is the area average over 108S–108N, 1208E–1808. The regions where the
regression coefficient is statistically significant above 5% are hatched. Units are in K per unit standard deviation of the
SST time series. The forecasts initiated from the first and fifteenth each month of JJAS and DJFM during 2011–18 are
used in computing the regression.
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bias (Fig. 5) suggesting a possible connection to the SST
bias. The contrast between the regression patterns in the
first 3 weeks and week 4 suggests the existence of SST biases
in the initial conditions rather than biases developed as fore-
casts evolve. The most interesting result is seen during boreal
winter, when the influence of SST bias is not significant with
the exception of week 3, when a large area is covered by posi-
tive values of the regression coefficients. In this area, the fore-
cast has a warm bias in the surface temperature, which is
highly likely to be related to the tropical SST bias. Contrary to
the expectation of an increase of the SST influence at longer
time leads, in week 4 the region with strong regression changes
sign and is not significant.

To determine the proportion of midlatitude biases (the
dependent variable in our regression model) that can be ex-
plained by the tropical SST biases (independent variable),

the R2 coefficient is shown in Figs. S2–S5 (see the online
supplemental material). The fraction explained by the tropical
Pacific SST bias is ;6.25% for dynamical fields (geopotential
height, temperature, and storm track) and ;5% for precipita-
tion. Despite of relatively small values of R2, regions with the
largest values are also those with robust correlations.

The remaining fraction of biases not explained by the SST
biases could be attributed to local effects, the global warming
induced by the Indian Ocean warming (Schott et al. 2009) and
tropical western Pacific (S.-P. Xie et al. 2010), as well as biases
in the Atlantic Ocean (Johnson et al. 2020).

c. Relationship between forecast biases and
forecast errors

Forecast biases result from the assumptions that numerical
model makes about the predicted processes and numerical

FIG. 11. RMS error in the forecasts of daily mean 500 hPa geopotential height (gpm) for the first 4 weeks of forecasts
during (left) JJAS and (right) DJFM. The forecasts initiated from the first and fifteenth each month of JJAS and
DJFM during 2011–18 are used in computing the RMS error.
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schemes used for solving the model’s equations. Forecast er-
rors result from random variations in the system. Because
forecast error has no preferred direction and magnitude, it
can be reduced by averaging over a large number of forecasts.
Conversely, bias has a net direction and magnitude. As a re-
sult, averaging over a large number of forecasts will not elimi-
nate the effect of bias. The error is computed after the model
calibration, a process in which model bias is removed.

To evaluate the relationship between the forecast biases in-
duced by the tropical Pacific SST biases and forecast errors,
Figs. 11–14 show the root-mean-square error (RMSE) of
Z500 (raw and filtered values), precipitation, and surface tem-
perature. A comparison of the RMSE to the regression maps
(Figs. 6–10) suggests a qualitative relationship between the
forecast errors and biases across all meteorological parame-
ters analyzed. While regression coefficients have positive and

negative values, the RMSE values are positively defined,
meaning that a positive and a negative value of the regression
coefficient can lead to the same forecast error. In these com-
parisons, a relationship between forecast errors and forecast
biases over a region is assumed to occur if that region is domi-
nated at the same time by large RMSE values and significant
values of regression.

During boreal summer, the region in the central United
States with significant Z500 biases shows changes in the unfil-
tered (Fig. 11) and filtered (Fig. 12) RMSEs in both upstream
and downstream zonal directions. During boreal winter, starting
from week 2 there is a good correspondence between the re-
gions with significant unfiltered Z500 biases and large RMSEs.

A relationship between precipitation biases and forecast
errors is not obvious during boreal summer (Fig. 13). Dur-
ing boreal winter, there is a good correspondence between

FIG. 12. RMS error in the forecasts of 8-day high-pass filtered daily anomaly of 500 hPa geopotential height (gpm)
for the first 4 weeks of forecasts during (left) JJAS and (right) DJFM. The forecasts initiated from the first and
fifteenth each month of JJAS and DJFM during 2011–18 are used in computing the RMS error.
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the region with large RMSE in the southeastern United States
(Fig. 13) and biases over this region (Fig. 9). However, the im-
pact of SST biases over the southeastern United States is not
robust.

Surface temperature (Fig. 14) displays the most obvious
connections between the biases and forecast errors at all lead
times during both seasons. In boreal summer, the region with
large RMSEs that persist from week 1 though week 4 parallel

to the West Coast of the United States corresponds to a region
with significant influence from the tropical SST bias (Fig. 10).
The RMSEs in the central United States can also be linked to
the regression patterns over these regions. In boreal winter,
during week 3 the large area with significant relationship be-
tween surface temperature biases and SST biases has some
correspondence to the pattern of RMSEs, although in this
area the forecast errors do not reach a maximum. In week 4

FIG. 13. RMS error in the forecasts of daily mean precipitation (mm day21) for the first 4 weeks of forecasts during
(left) JJAS and (right) DJFM. The forecasts initiated from the first and fifteenth each month of JJAS and DJFM dur-
ing 2011–18 are used in computing the RMS error.
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the region with maximum RMSEs has a correspondence to
the regression map (Fig. 10); however, the regression pattern
is not robust.

4. Discussion and conclusions

This study evaluated the biases that develop in the first
4 weeks of a set of deterministic forecasts produced with the

coupled model UFS. Assuming that SST biases in the tropical
Pacific can affect extratropical biases, the relationship between
the SST biases in the deep tropics of the Pacific and surface
and tropospheric weather was also investigated. The strength
of the relationship was measured by the linear regression of an
area average equatorial index and meteorological variables
over the CONUS. Results of the regression analysis suggest
a robust influence of the SST biases on the biases in the

FIG. 14. RMS error in the forecasts of the daily mean surface temperature (K) for the first 4 weeks of forecasts
during (left) JJAS and (right) DJFM. The forecasts initiated from the first and fifteenth each month of JJAS and
DJFM during 2011–18 are used in computing the RMS error.
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large-scale circulation, surface precipitation, and temperature.
The SST influence manifests at all lead times with an increas-
ing influence from week 2 to week 4 for most fields with the
exception of surface temperature, which also shows a strong
influence of SST bias during the first week of the forecast.

The relationship between tropical SST bias and bias in the
northern Pacific storm track has also been explored and re-
sults of the analysis indicated a weak linkage. The UFS model
predicts a weaker than observed extratropical storm-track in-
tensity; however, this bias is not related to the tropical SST bias.
Similar to findings of Small et al. (2019), the bias in the storm-
track strength is likely caused by the cold SST bias in the north-
west Pacific. In some climate models, this cold bias is related to
the horizontal resolution of the ocean model (Woollings et al.
2010; Small et al. 2019). Other studies indicate that midlatitude
SST fronts associated with the Kuroshio affect the variability of
storm track (Nakamura et al. 2008).

A qualitative relationship between the SST-induced biases
and forecast errors measured by the RMSE has been explored.
The comparison between regression and RMSE showed large
areas of agreements. Thus, the RMSE of the forecast can be
minimized by removing the bias in the meteorological field
that is related to the tropical SST bias.

This study is limited to the influence of tropical Pacific SST
bias onto the atmospheric variability over CONUS. Vitart
and Balmaseda (2018) showed that in the ECMWF model,
week 4 precipitation biases over CONUS have a small influ-
ence from SST biases in the Atlantic Ocean. These influences
of SST biases will be addressed in a future study.
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